VIABILITY METHOD—SHOOT TIPS NLGRP CLONAL MS MENTHA SHOOT TIP REGROWTH 1 04/06/2020

File Name

NLGRP_CLONAL_MENTHA_SHOOT-TIP-REGROWTH_1.PDF

Authors

Katheryn Chen (Katheryn.Chen@usda.gov)*, Remi Bonnart (Remi.Bonnart@usda.gov), Elise Staats (Elise.Staats@usda.gov), Maria Jenderek (Maria.Jenderek@usda.gov), Gayle Volk (Gayle.Volk@usda.gov)

*Method PDF contact person

National Laboratory for Genetic Resources Preservation, 1111 S. Mason St., Fort Collins, CO 80521

Introduction

Shoot tips of *Mentha* spp. are cryopreserved using droplet-vitrification. They are recovered through shoot tip regrowth.

Source of Plant Material

Mentha shoot tips are stored in the vapor phase of liquid nitrogen.

Plant Material Description

Shoot tips were cut to 1 mm in size and preserved in droplets of PVS2 on foil strips. There are approximately 10 shoots tips per foil strip, and 1 foil strip per 1.2 mL internally threaded cryovial.

Warming

Remove cryovial from LN, quickly uncap and remove the foil strip containing shoot tips. Immediately submerge the foil and shoot tips in room temperature Unloading Solution (MS + 1.2 M sucrose). Allow shoot tips to soak for 20 minutes. Plate onto 60 mm x 15 mm petri plates containing about 12 mL solid Recovery Medium (MS + BA + IBA).

Regrowth/Viability Conditions

Place Petri dish in the dark for two weeks followed by dim light (\sim 32 umol/m²/s or \sim 2500 lux with 16-hour photoperiod) for 1 week, then transfer to full light (\sim 63 umol/m²/s or \sim 5000 lux with 16-hour photoperiod) for approximately 3 weeks, until viability is evaluated. Grow *in vitro* cultures of Mentha in an environmentally controlled growth room at 25 °C.

Regrowth/Viability Assessment

Plantlets are grown for several weeks to allow time for healthy shoot, leaf, and root production. Plantlets are considered viable with at least 4 mm shoot growth.

Comments

N/A

References

Keller E.R.J., Senula A., Kaczmarczyk A. (2008) Cryopreservation of Herbaceous Dicots. In: Reed B.M. (eds) Plant Cryopreservation: A Practical Guide. Springer, New York, NY

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473-497.

Senula A, Joachim Keller AR, Sanduijav T, Yohannes. 2007. Cryopreservation of coldacclimated mint (Mentha spp.) shoot tips using a simple vitrification protocol. CryoLetters 28(1): 1-12.

Towill LE. 1990. Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Reports 9:178-180.

Towill LE, Bonnart RM. 2003. Cracking in a Vitrification Solution During Cooling or Warming Does Not Affect Growth of Cryopreserved Mint Shoot Tips. Cryoletters 24 (6): 341-346. Dodds JH, Roberts LW 1982. Experiments in plant tissue culture. Cambridge University Press, Cambridge, London New York.

Yamamoto S, Rafique T, Fukui K, Sekizawa K, Niino T. 2012. V-cryo-plate procedure as an effective protocol for cryobanks: case study of mint cryopreservation. CryoLetters 33(1): 12-23.

Appendices

Unloading Solution (MS + 1.2 M sucrose): 1 L

- Murashige & Skoog Basal Medium with Vitamins (Phytotechnology Labs M519) = 4.43 g
- Sucrose = 411.0 g
- Bring to volume
- pH = 5.7
- Dispense into desired vessels
- Sterilize in autoclave

Recovery Medium (MS + BA + IBA): 1 L

- Murashige & Skoog Basal Medium with Vitamins (Phytotechnology Labs M519) = 4.43 g
- Sucrose = 30.0 g
- BA (6-benzylaminopurine) = 0.5 mg
- IBA (indole-3-butyric acid) = 0.1 mg
- Bring to volume
- Agar = 7.0 g
- pH = 5.7
- Sterilize in autoclave
- In laminar flow hood, dispense liquid medium into sterile Petri dishes