VIABILITY METHOD—SHOOT TIPS NLGRP CLONAL MS FRAGARIA SHOOT-TIP-REGROWTH 1 04/03/2020

File Name NLGRP_CLONAL_MS_FRAGARIA_SHOOT-TIP-REGROWTH_1

Authors

Remi Bonnart (<u>remi.bonnart@usda.gov</u>)*, Elise Staats (<u>elise.staats@usda.gov</u>)

*Method PDF contact person

USDA-ARS National Laboratory for Genetic Resources Preservation, Plant & Animal Genetic Resources Preservation Research Unit, 1111 S. Mason St., Fort Collins, CO 80521 USA

Introduction

(Excerpt from Niino et al., 2003)

Strawberry is an important economic and nutritious crop in many countries. Strawberry germplasm is commonly preserved as plants either in field or in insect proof screen houses. In these gene banks, the plants are subject to risks of losses caused by biological and natural hazards. For strawberry preservation, there are some disadvantages, such as periodic replanting, possibility of contamination by runners from other clones and naturally spread viruses or virus-like diseases. An alternative method is in vitro preservation of strawberry cultures at refrigerated temperature for medium term storage. Over 350 Fragaria accessions are stored in gas permeable tissue-culture bags at 4°C at the National Clonal Germplasm Repository in Corvallis, OR.

Cryopreservation is one of the ideal and suitable options for long-term storage of plant germplasm. Cryopreservation techniques are now advanced at the stage where they can be implemented for useful storage of germplasm. Techniques of controlled freezing, vitrification, encapsulation-dehydration, encapsulation-vitrification, dormant bud preservation and combinations of these are now available for use. Although a few papers have been reported for strawberry cryopreservation, there has been no application on a large-scale to germplasm lines.

In Japan, about 700 accessions of strawberry germplasm (Fragaria species) have been maintained as field collections. The objective in this study was to establish a reliable protocol for the cryopreservation of strawberry shoot tips using vitrification. This method would then be used for a largescale cryopreservation project of Fragaria species.

Source of Plant Material

Cryogenic storage (vapor/liquid phase)

Plant Material Description

Shoot tips on foil strips inside of cryo vials

Warming

Remove foil strips from vials and warm foil strips in room temperature unloading solution until melted and shoot tips are floating in unloading solution; incubate for 20 minutes

Regrowth/Viability Conditions

Transfer shoot tips to recovery medium in 60 X 15mm petri plates (~12mL medium with 5 shoot tips per plate) and culture for two weeks at 25°C in darkness. Transfer plates to low light intensity (~55 umol/m²/s or ~4500 lux with 16-hour photoperiod) at 25°C.

Regrowth/Viability Assessment

Evaluate for shoot regrowth after ~4 weeks

Comments

N/A

References

Niino et al. 2003. Cryopreservation of In Vitro-Grown Apical Shoot Tips of Strawberry by Vitrification. Plant Biotechnology, 20 (1), 75-80.

Appendices

- Unloading solution: MS salts/vitamins + .8M sucrose at pH 5.8 (pH 6.45 prior to autoclaving)
- **Recovery medium:** MS salts/vitamins + 25g/L sucrose + .2mg/L BAP + 1g/L PVP + 8g/L agar at pH 5.8 (pH 6.45 prior to autoclaving)